Home > News > Industry News > The history of Rapid prototyp.....
Certifications
Certifications
Contact us
Vice General Manager: Ivy
Tel:86-13312953695
Tel:86-755-82737317/82737469
Fax:86-755-82737710
E-mail: sales.china@xy-global.com
Postal Code: 518109
Off Add: Room 405, LiJinCheng Bulding, Jihua Road, Longhua new district,Shenzhen.
Factory Add:Daling Industrial Area,Shaling,Fenggang Town,Dongguan CityContact Now

News

The history of Rapid prototyping

  • Author:Coolidge
  • Source:www.diecastingpartsupplier.com
  • Release on :2018-07-11
In the 1970s, Joseph Henry Condonand others at Bell Labs developed the Unix Circuit Design System(UCDS), automating the laborious and error-prone task of manually converting drawings to fabricate circuit boards for the purposes of research and development.

In the year 1980s U.S. policy makers and industrial managers were forced to take note that America's dominance in the field of machine tool manufacturing evaporated, in what was named the machine tool crisis. Numerous projects sought to counter these trends in the traditional CNC CAM area, which had begun in the US. Later when Rapid Prototyping Systems moved out of labs to be commercialized, it was recognized that developments were already international and U.S. rapid prototyping companies would not have the luxury of letting a lead slip away. The National Science Foundation was an umbrella for the National Aeronautics and Space Administration (NASA), the US Department of Energy, the US Department of Commerce NIST, the US Department of Defense, Defense Advanced Research Projects Agency(DARPA), and the Office of Naval Research coordinated studies to inform strategic planners in their deliberations. One such report was the 1997  Rapid Prototyping in Europe and Japan Panel Report [2] in which Joseph J. Beaman [8] founder of DTM Corporation [DTM RapidTool pictured] provides a historical perspective:

“The roots of rapid prototyping technology can be traced to practices in topography and photosculpture. Within TOPOGRAPHY Blanther (1892) suggested a layered method for making a mold for raised relief paper topographical maps .The process involved cutting the contour lines on a series of plates which were then stacked. Matsubara (1974) of Mitsubishi proposed a topographical process with a photo-hardening photopolymer resin to form thin layers stacked to make a casting mold. PHOTOSCULPTURE was a 19th-century technique to create exact three-dimensional replicas of objects. Most famously Francois Willeme  (1860) placed 24 cameras in a circular array and simultaneously photographed an object. The silhouette of each photograph was then used to carve a replica. Morioka (1935, 1944) developed a hybrid photo sculpture and topographic process using structured light to photographically create contour lines of an object.The lines could then be developed into sheets and cut and stacked, or projected onto stock material for carving. The Munz (1956) Process reproduced a three-dimensional image of an object by selectively exposing, layer by layer, a photo emulsion on a lowering piston. After fixing, a solid transparent cylinder contains an image of the object.” — Joseph J. Beaman [9]

The technologies referred to as Solid Freeform Fabrication are what we recognize today as rapid prototyping, 3D printing or additive manufacturing: Swainson (1977), Schwerzel (1984) worked on polymerization of a photosensitive polymer at the intersection of two computer controlled laser beams. Ciraud (1972) considered magnetostatic or electrostaticdeposition with electron beam, laseror plasma for sintered surface cladding. These were all proposed but it is unknown if working machines were built. Hideo Kodama of Nagoya Municipal Industrial Research Institute was the first to publish an account of a solid model fabricated using a photopolymer rapid prototyping system (1981). [2]Even at that early date the technology was seen as having a place in manufacturing practice. A low resolution, low strength output had value in design verification, mould making, production jigs and other areas. Outputs have steadily advanced toward higher specification uses. [10]

Innovations are constantly being sought, to improve speed and the ability to cope with mass production applications. [11] A dramatic development which RP shares with related CNC areas is the freeware open-sourcing of high level applications which constitute an entire CAD-CAM toolchain. This has created a community of low res device manufacturers. Hobbyists have even made forays into more demanding laser-effected device designs. [12] 

Thank you for keep noticing the news of XY-GLOBAL team , it is our pleasure to offer more interesting news for you